Referências

1.
Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. John Wiley & Sons; 2008.
2.
Massad E, Silveira PSP, Menezes RX de, Ortega NRS. Métodos quantitativos em medicina. Editora Manole Ltda; 2004.
3.
Kendall MG. Studies in the history of probability and statistics. Where shall the history of statistics begin? Biometrika. 1960;47(3/4):447–9.
4.
Breve história dos censos [Internet]. Instituto Nacional de Estatistica. Statistics Portugal; 2014. Available from: https://censos.ine.pt/xportal/xmain?xpid=CENSOS&xpgid=censos_bhistoria
5.
Salgado-Neto G, Salgado A. Sir francis galton e os extremos superiores da curva normal. Revista de Ciências Humanas. 2011;45(1):223–39.
6.
Stolley PD, Lasky T. The beginnings of epidemiology. In: Investigating disease patterns. Scientific American Library; 2000. p. 23–49.
7.
Stolley PD, Lasky T. Lung cancer: New methods of studying disease. In: Investigating disease patterns. Scientific American Library; 2000. p. 51–79.
8.
Editors History com. Florence Nightingale. https://www.history.com/topics/womens-history/florence-nightingale-1;
9.
Moore DS. Topics in inferency. In: The basic practice of statistics. W.H. Freeman; 2000. p. 417.
10.
Hald A. Biography of fisher. In: A history of parametric statistics inference from bernoulli to fisher,1713-1935. John Wiley & Sons; 2007. p. 159–63.
11.
Salsburg D. Uma senhora toma chá... In: Uma senhora toma chá. Zahar; 2009. p. 17–23.
12.
Kruskal W. The significance of fisher: A review of r.a. Fisher: The life of a scientist. Journal of the American Statistical Association [Internet]. 1980;75(372):1019–30. Available from: https://doi.org/10.1080/01621459.1980.10477590
13.
Matthews R, Chalmers I, Rothwell P. Douglas g altman: Statistician, researcher, and driving force behind global initiatives to improve the reliability of health research. British Medical Journal Publishing Group; 2018.
14.
Altman DG. The scandal of poor medical research. Vol. 308, Bmj. British Medical Journal Publishing Group; 1994. p. 283–4.
15.
R Core Team. The r project for statistical computing | what is r? Disponível em: https://www.r-project.org/about.html; 2022.
16.
R Core Team. The r project for statistical computing | CRAN mirrors. Disponível em: https://cran.r-project.org/mirrors.html; 2022.
17.
Whitney L et al. R programming language continues to grow in popularity [Internet]. TechRepublic. 2020. Available from: https://www.techrepublic.com/article/r-programming-language-continues-to-grow-in-popularity
18.
Oliveira Filho PF de. Natureza dos dados. In: Epidemiologia e bioestatística–fundamentos para a leitura crítica. 2ª edição. Editora Rubio; 2022. p. 3–6.
19.
Blog TJR. Positron vs rstudio – is it time to switch? [Internet]. R-bloggers. 2024. Available from: https://www.r-bloggers.com/2024/12/positron-vs-rstudio-is-it-time-to-switch/
20.
Software P. Frequently asked questions [Internet]. Positron. Posit Software, PBC; 2025. Available from: https://positron.posit.co/faqs.html
21.
Kirkwood BR, Sterne JA. Defining the data. In: Essential medical statistics. Second Edition. Blackwell Science Company; 2003. p. 9–14.
22.
Sternbach GL. The glasgow coma scale. The Journal of emergency medicine. 2000;19(1):67–71.
23.
Pediatrics AA of, Obstetricians AC of. The apgar score. Pediatrics. 2006;117(4):1444–7.
24.
GeeksforGeeks. Case when statement in r dplyr package using case_when() function [Internet]. GeeksforGeeks. GeeksforGeeks; 2025. Available from: https://www.geeksforgeeks.org/r-language/case-when-statement-in-r-dplyr-package-using-case_when-function/
25.
Daniel WW, Cross CL. Grouped data: The frequency distribuition. In: Biostatistics: A foundation for analysis in the health sciences. Tenth Edition. Wiley; 2013. p. 22--23.
26.
Viana K de J, Taddei JA de AC, Cocetti M, Warkentin S. Birth weight in brazilian children under two years of age. Cadernos de Saúde Pública. 2013;29:349–56.
27.
Iannone R, Cheng J, Schloerke B, et al. Gt: Easily create presentation-ready display tables. 2020; Available from: https://CRAN.R-project.org/package=gt
28.
Sjoberg DD, Whiting K, Curry M, Lavery JA, Larmarange J. Reproducible summary tables with the gtsummary package. The R Journal [Internet]. 2021;13:570–80. Available from: https://doi.org/10.32614/RJ-2021-053
29.
Schirmer J, Outros. Fatores de risco reprodutivo. In: Assistência pré-natal: Manual técnico [Internet]. 3a Edição. Ministério da Saúde; 2000. p. 25–6. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/cd04_11.pdf
30.
Navarro D. Use of flextable [Internet]. Notes from a data witch. 2024. Available from: https://blog.djnavarro.net/posts/2024-07-04_flextable/
31.
Gohel D, Skintzos P. Flextable: Functions for tabular reporting [Internet]. 2025. Available from: https://CRAN.R-project.org/package=flextable
32.
Holtz Y. R color brewer’s palettes [Internet]. – the R Graph Gallery. 2025. Available from: https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
33.
Hvitfeldt E. Use any color palette with paletteer [Internet]. The R Graph Gallery. 2024. Available from: https://r-graph-gallery.com/package/paletteer.html
34.
Bowers D. First things first-the nature of data. In: Medical statistics from scratch. Second Edition. John Wiley; Sons; 2008. p. 3–13.
35.
Ribeiro Mendes F. O que é um trabalho científico. In: Iniciacão cientifica. Autonomia Editora; 2012. p. 17–26.
36.
Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB. Elaborando a questão de pesquisa e desenvolvendo o plano de estudo. In: Delineando a pesquisa clinica. Quarta Edição. Artmed Editora; 2015. p. 15–24.
37.
McCombes S. Sampling methods [Internet]. https://www.scribbr.com/methodology/sampling-methods/. scribbr.com Team; 2019. Available from: https://www.scribbr.com/
38.
Callegari-Jacques SM. Amostras. In: Bioestatistica: Principios e aplicações. Artmed Editora; 2003. p. 146–7.
39.
Faul F, Erdfelder E, Lang A-G, Buchner A. G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods. 2007;39(2):175–91.
40.
Cohen J. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates; 1988.
41.
Grimes DA, Schulz KF. An overview of clinical research: The lay of the land. The lancet. 2002;359(9300):57–61.
42.
Fletcher RH, Fletcher SW, Fletcher GS. Prognóstico. In: Epidemiologia clínica: Elementos essenciais. Artmed Editora; 2014. p. 108–9.
43.
Grimes DA, Schulz KF. Descriptive studies: What they can and cannot do. The Lancet. 2002;359(9301):145–9.
44.
Fletcher RH, Fletcher SW, Fletcher GS. Risco: Da doença à exposição. In: Epidemiologia clínica: Elementos essenciais. Artmed Editora; 2014. p. 88.
45.
Grimes DA, Schulz KF. Compared to what? Finding controls for case-control studies. The Lancet. 2005;365(9468):1429–33.
46.
Ernster VL. Nested case-control studies. Preventive Medicine. 1994;23(5):587–90.
47.
Newman TB, Browner WS, Cummings SR, Hulley SB. Delineando estudos de caso-controle. In: Delineando a pesquisa clinica. Quarta Edição. Artmed Editora; 2015. p. 111.
48.
Grimes DA, Schulz KF. Cohort studies: Marching towards outcomes. The Lancet. 2002;359(9303):341–5.
49.
Fletcher RH, Fletcher SW, Fletcher GS. Risco: Da doença à exposição. In: Epidemiologia clínica: Elementos essenciais. Artmed Editora; 2014. p. 68.
50.
Celentano DD, Szklo M. Cohort studies. In: Gordis epidemiology. 6th Edition. Elsevier; 2019. p. 179.
51.
Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: The framingham study. Circulation. 1979;59(1):8–13.
52.
Coutinho M. Principios de epidemiologia clínica aplicada a cardiologia. Arquivos Brasileiros de Cardiologia. 1998;71:109–16.
53.
McCambridge J, Witton J, Elbourne DR. Systematic review of the hawthorne effect: New concepts are needed to study research participation effects. Journal of Clinical Epidemiology. 2014;67(3):267–77.
54.
Bland JM, Altman DG. Statistic notes: Regression towards the mean. BMJ. 1994;308(6942):1499.
55.
Kabisch M, Ruckes C, Seibert-Grafe M, Blettner M. Randomized controlled trials: Part 17 of a series on evaluation of scientific publications. Deutsches Ärzteblatt International. 2011;108(39):663.
56.
Fletcher RH, Fletcher SW, Fletcher GS. Tratamento. In: Epidemiologia clínica: Elementos essenciais. Artmed Editora; 2014. p. 143.
57.
Elander G, Hermerén G. Placebo effect and randomized clinical trials. Theoretical Medicine. 1995;16(2):171–82.
58.
Schulz KF, Grimes DA. Blinding in randomised trials: Hiding who got what. The Lancet. 2002;359(9307):696–700.
59.
Montori VM, Guyatt GH. Intention-to-treat principle. CMAJ. 2001;165(10):1339–41.
60.
Christensen E. Methodology of superiority vs. Equivalence trials and non-inferiority trials. Journal of hepatology. 2007;46(5):947–54.
61.
Health Improvement O for, Disparities. Crossover randomised controlled trial: Comparative studies [Internet]. Office for Health Improvement and Disparities. UK Health improvement; 2020. Available from: https://www.gov.uk/guidance/crossover-randomised-controlled-trial-comparative-studies
62.
Hennekens CH, Buring JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. New England Journal of Medicine. 1996;334(18):1145–9.
63.
Stanley K. Design of randomized controlled trials. Circulation. 2007;115(9):1164–9.
64.
Chang W. Cookbook for r. Cookbook for R. http://www.cookbook-r.com; 2021.
65.
Verzani J. Using r for introductory statistics. Chapman; Hall/CRC; 2004.
66.
Damiani A, Milz B, Lente C, al et. Ciência de dados em r [Internet]. R6 Consultoria; 2015. Available from: https://livro.curso-r.com/index.html
67.
Zuur AF, Ieno EN, Meesters EH. Getting data into r. In: A beginner’s guide to r. Springer; 2009. p. 29–56.
68.
Wickham H, François R, Henry L, Müller K, et al. Dplyr: A grammar of data manipulation. R package version 04. 2015;3:156.
69.
Wickham H, Grolemund G. 15 factors|r for data science [Internet]. Welcome | R for Data Science. O’Reilly; 2017. Available from: https://r4ds.had.co.nz/factors.html
70.
Ooms J. Writexl: Export data frames to excel ’xlsx’ format [Internet]. 2022. Available from: https://CRAN.R-project.org/package=writexl
71.
Team RC. Write.table: Data output/CSV files [Internet]. DataCamp; 2022. Available from: https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/write.table
72.
Wickham H, Averick M, Bryan J, Chang W, et al. Welcome to the tidyverse. Journal of Open Source Software. 2019;4(43):1686.
73.
Wickham H. Tidy data. Journal of Statistical Software. 2014;59(10):11–23.
74.
Bache SM, Wickham H. Magrittr: A forward-pipe operator for r. 2022.
75.
Damiani A, Milz B, Lente C, Outros. O pacote forcats [Internet]. Ciência de Dados em R. R6 Consultoria; 2022. Available from: https://livro.curso-r.com/7-6-forcats.html#o-que-s%C3%A3o-fatores
76.
Wickham H, Girlich M. Tidyr: Tidy messy data [Internet]. 2022. Available from: https://CRAN.R-project.org/package=tidyr
77.
Grolemund G, Wickham H. Dates and times made easy with lubridate. Journal of Statistical Software [Internet]. 2011;40(3):1–25. Available from: https://www.jstatsoft.org/v40/i03/
78.
Field A, Miles J, Field Z. Everithing you ever wanted to know about statistics (well, sort of). In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 38.
79.
Arango HG. Organização dos dados em tabelas. In: Bioestatística: Teórica e computacional. 3ª edição. Guanabara Koogan; 2009. p. 32–57.
80.
Arango HG. Números de classes e intervalo de classes. In: Bioestatística teórica e computacional. Terceira edição. Guanabara Koogan, RJ; 2009. p. 35–40.
81.
Field A, Miles J, Field Z. Exploring data with graphs. In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 117.
82.
Wickham H. A layered grammar of graphics. Journal of Computational and Graphical Statistics. 2010;19(1):3–28.
83.
Wickham H. ggplot2: Elegant graphics for data analysis [Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org
84.
Wickham H, Navarro D, Pedersen TL. ggplot2: Elegant graphics for data analysis (3e) [Internet]. 2023. Available from: http://www.new.pmean.com/ggplot2-book/
85.
Rinker TW, Kurkiewicz D. Pacman: Package management for r [Internet]. Buffalo, New York; 2018. Available from: http://github.com/trinker/pacman
86.
Debnath L, Basu K. A short history of probability theory and its applications. International Journal of Mathematical Education in Science and Technology. 2015;46(1):13–39.
87.
Menezes RX de. Introdução à probabilidade. In: Massad E, Menezes RX de, Silveira PSP, Ortega NRS, editors. Métodos quantitativos em medicina. Barueri, São Paulo: Editora Manole Ltda.; 2004. p. 151–87.
88.
Pagano M, Kimberly G. Theoretical probability distributions. In: Principles of biostatistics. Second Edition. CRC Press; 2000. p. 162.
89.
Jain S. A guide to dnorm, pnorm, rnorm, and qnorm in r [Internet]. GeeksforGeeks. 2022. Available from: https://www.geeksforgeeks.org/
90.
Gonzalez JCS. Normal distribution in r [Internet]. R CODER. 2021. Available from: https://r-coder.com/
91.
Robertson E, O’Connor J. Jacob (jacques) bernoulli [Internet]. Maths History. School of Mathematics; Statistics, University of St Andrews; 2022. Available from: https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
92.
Fisher LD, Van Belle G. Poisson random variables. In: Biostatistics: A methodology for the health sciences. New York, NY: John Wiley & Sons; 1993. p. 211–8.
93.
Peat J, Barton B. Descriptive statistics. In: Medical statistics : A guide to SPSS, data analysis, and critical appraisal. New York, NY: John Wiley & Sons; 2014. p. 24–51.
94.
Joanes D, Gill C. Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society. 1998;47(1):183–9.
95.
George D, Mallery P. Descriptive statistics. In: IBM SPSS statistics 26 step by step: A simple guide and reference. New York, NY: Taylor & Francis Group; 2020. p. 114–20.
96.
Pagano M, Gavreau K. The central limit theorem. In: Principles of biostatistics. Second Edition. Pacific Grove, CA: Duxbury; 2000. p. 197–8.
97.
Motulsky H. The theory of confidence intervals. In: Intuitive biostatistics: A nonmathematical guide to statistical thinking. Second Edition. New York, NY: Oxford University Press; 2010. p. 96–102.
98.
Signorell A et al. DescTools: Tools for descriptive statistics [Internet]. 2022. Available from: https://cran.r-project.org/package=DescTools
99.
Kelen GD, Brown CB, Ashton J. Statistical reasoning in clinical trials: Hypothesis testing. Am J Emerg Med. 1988;1(1):52–61.
100.
Menezes RX de, Burattini MN. Testes de hipótese e intervalos de confiança. In: Massad E, Menezes RX de, Silveira PSP, Ortega NRS, editors. Métodos quantitativos em medicina. Barueri, São Paulo: Editora Manole Ltda.; 2004. p. 225–41.
101.
Guyatt G, Jaeschke R, Heddle N, et al. Basic statistics for clinicians: 1. Hypothesis testing. CMAJ: Canadian Medical Association Journal. 1995;152(1):27.
102.
Fletcher RH, Fletcher SW, Fletcher GS. Acaso. In: Epidemiologia clínica: Elementos essenciais. Quinta Edição. Artmed Editora; 2014. p. 108–9.
103.
Menezes RX de, Burattini MN. Testes de hipótese e intervalos de confiança. In: Massad E, Menezes RX de, Silveira PSP, Ortega NRS, editors. Métodos quantitativos em medicina. Barueri, São Paulo: Editora Manole Ltda.; 2004. p. 225–41.
104.
Pagano M, Kimberly G. Comparison of two means. In: Principles of biostatistics. Second Edition. CRC Press; 2000. p. 262–72.
105.
Zimmerman DW. A note on preliminary tests of equality of variances. Br J Math Stat Psychol. 2004;57(1):173–81.
106.
Razali NM, Wah YB, et al. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics. 2011;2(1):21–33.
107.
Ghasemi A, Zahediasl S. Normality tests for statistical analysis: A guide for non-statisticians. International journal of endocrinology and metabolism. 2012;10(2):486.
108.
Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011;81(12):2141–55.
109.
Fox J, Weisberg S. An r companion to applied regression [Internet]. Third. Thousand Oaks CA: Sage; 2019. Available from: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
110.
Kassambara A. Rstatix: Pipe-friendly framework for basic statistical tests [Internet]. 2022. Available from: https://CRAN.R-project.org/package=rstatix
111.
Damasio B. Teste post hoc: O que é e qual utilizar? [Internet]. Blog Psicometria Online. 2021. Available from: https://www.blog.psicometriaonline.com.br/o-que-e-um-teste-post-hoc/
112.
Anunciação L. Conceitos e análises estatisticas com r e jasp [Internet]. ANOVA de medidas repetidas. 2021. Available from: https://bookdown.org/luisfca/docs/anova-de-medidas-repetidas.html
113.
Cohen J. Statistical power analysis for the behavioral sciences. 2nd Edition. Routledge; 1988.
114.
Lindenau JD, Guimaraes LSP. Calculating the effect size in SPSS. Revista HCPA [Internet]. 2012;32(3):363–81. Available from: https://seer.ufrgs.br/hcpa
115.
Field A, Miles J, Field Z. Comparing several means: ANOVA (GML 1). In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 399–400.
116.
Menezes RX de. Análise de variância. In: Massad E, Menezes RX de, Silveira PSP, Ortega NRS, editors. Métodos quantitativos em medicina. Barueri, São Paulo: Editora Manole Ltda.; 2004. p. 297–300.
117.
Ferreira DF, Helms BP. Aproximação normal da distribuição f. Rev Bras Biom. 2011;29(2):222–8.
118.
Schuh CM. Efeitos da exposição ao fumo durante a gestação nas medidas antropométricas dos recém-nascidos [Master’s thesis]. Universidade Federal do Rio Grande do Sul; 2008.
119.
Armitage P, Berry G, Matthews JNS. Checking the model. In: Statistical methods in medical research. Fourth Edition. Blackwell Science; 2002. p. 356–75.
120.
Cook RD, Weisberg S. Residuals and influence in regression [Internet]. Chapman; Hall; 1986. (Monographs on statistics and applied probability). Available from: https://books.google.com.br/books?id=aMDpswEACAAJ
121.
Field A, Miles J, Field Z. Influential cases. In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 269–71.
122.
Belsley DA, Kuh E, Welsch RE. Regression diagnostics: Identifying influential data and sources of collinearity. New York, NY: John Wiley & Sons; 1980. (Wiley series in probability and statistics).
123.
Altman DG. One way analysis of variance. In: Practical statistics for medical research. London: Chapman & Hall/CRC; 1991. p. 206–9.
124.
Peat J, Barton B. Continuous variables: Analysis of variance. In: Medical statistics : A guide to SPSS, data analysis, and critical appraisal. New York, NY: John Wiley & Sons; 2014. p. 114.
125.
Dag O, Dolgun A, Konar NM. Onewaytests: An r package for one-way tests in independent groups designs. R Journal. 2018;10(1):175–99.
126.
Ben-Shachar MS, Lüdecke D, Makowski D. Effectsize: Estimation of effect size indices and standardized parameters. Journal of Open Source Software. 2020;5(56):2815.
127.
Watson P. Rules of thumb on magnitudes of effect sizes [Internet]. MRC Cognition and Brain Sciences Unit. Cambridge University; 2021. Available from: https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize
128.
Barton B, Peat J. Analysis of variance. In: Medical statistics: A guide to SPSS, data analysis and critical appraisal. Second Edition. John Wiley & Sons Ltd.; 2014. p. 112–6.
129.
Bland M. In: An introduction to mrdical statistics. Fourth Edition. Oxford University Press; 2015. p. 145–7.
130.
Kassambara A. Ggpubr:’ggplot2’ based publication ready plots [r package ggpubr version 0.5.0] [Internet]. The Comprehensive R Archive Network. Comprehensive R Archive Network (CRAN); 2022. Available from: https://cloud.r-project.org/web/packages/ggpubr/index.html
131.
Matsubara L, Araujo LFC. Cap. 13 ANOVA de medidas repetidas [Internet]. https://bookdown.org/luisfca/docs/anova-de-medidas-repetidas.html; Bookdown; 2019. Available from: https://bookdown.org/luisfca/docs/anova-de-medidas-repetidas.html
132.
Pinheiro JC, Bates DM. Fitting linear mixed-effects models. In: Mixed-effects models in s and s-PLUS. New York, NY: Springer New York; 2000. p. 133–99.
133.
Microsoft Copilot. Assistente de inteligência artificial utilizado para apoio estatístico e redação técnica. https://copilot.microsoft.com; 2025.
134.
Huynh H, Feldt LS. Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics. 1976;1(1):69–82.
135.
Girden ER. Two-factor studies with repeated measures on both factors. In: ANOVA: Repeated measures. Sage; 1992. p. 31–40. (QASS series; vol. 84).
136.
Muller KE, Barton CN. Approximate power for repeated-measures ANOVA lacking sphericity. Journal of the American Statistical Association. 1989;84(406):549–55.
137.
Greene Jr JW, Touchstone JC. Urinary estriol as an index of placental function. A study of 279 cases. Obstetrical & Gynecological Survey. 1963;18(3):356–9.
138.
Kassambara A. Correlation test between two variables in r [Internet]. STHDA - Statistical tools for high-throughput data analysis. 2021. Available from: http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-r
139.
Schober P, Boer C, Schwarte LA. Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia. 2018;126(5):1763–8.
140.
De Winter JC, Gosling SD, Potter J. Comparing the pearson and spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological methods. 2016;21(3):273.
141.
Sedgwick P. Correlation versus linear regression. BMJ. 2013;346.
142.
Kim H-Y. Statistical notes for clinical researchers: Simple linear regression 3–residual analysis. Restorative dentistry & endodontics. 2019;44(1).
143.
Field A, Miles J, Field Z. Regression. In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 266–76.
144.
Peat J, Barton B. Correlation and regression. In: Medical statistics : A guide to SPSS, data analysis, and critical appraisal. New York, NY: John Wiley & Sons; 2014. p. 209.
145.
Altman DG, Gardner MJ. Statistics in medicine: Calculating confidence intervals for regression and correlation. British Medical Journal (Clinical research ed). 1988;296(6631):1238.
146.
Altman DG. Comparing groups: Categorical data. In: Practical statistics for medical research. London: Chapman & Hall/CRC; 1991. p. 244–7.
147.
Myszkowski N. Nhstplot package [Internet]. RDocumentation. 2020. Available from: https://rdocumentation.org/packages/nhstplot/versions/1.1.0
148.
Warnes GR, Bolker B, et al. Gmodels: Various r programming tools for model fitting [Internet]. CRAN R Project. 2022. Available from: https://rdrr.io/cran/gmodels/
149.
Comtois D. Summarytools: Tools to quickly and neatly summarize data [Internet]. CRAN R Project. 2022. Available from: https://github.com/dcomtois/summarytools
150.
Daniel WW, Cross CL. The chi-square distribution and analysis of frequencies. In: Practical statistics for medical research. Hoboken, NJ: John Wiley & Sons, Inc; 2013. p. 604–19.
151.
Eliasziw M, Donner A. Application of the McNemar test to non-independent matched pair data. Statistics in medicine. 1991;10(12):1981–91.
152.
Rosner B. Hypothesis testing: Categorical data. In: Fundamentals of biostatistics. Seventh Edition. Boston: Cengage; 2011. p. 377.
153.
Altman DG. Comparing groups: Continuos data. In: Practical statistics for medical research. London: Chapman & Hall/CRC; 1991. p. 194–7.
154.
Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. A lego system for conditional inference. The American Statistician. 2006;60(3):257–63.
155.
Zar JH. Paired-sample hypotheses. In: Biostatistical analysis. Edinburgh: Pearson; 2014. p. 189–98.
156.
Karadimitriou SM, Marshall E. Kruskal-wallis in r [Internet]. Statistics Support for Students. Loughborough; Coventry Universities; 2020. Available from: https://www.statstutor.ac.uk/
157.
Zar JH. Nonparametric analysis of variance. In: Biostatistical analysis. Edinburgh: Pearson; 2014. p. 226–30.
158.
Kanji GK. The kruskal–wallis test. In: 100 statiscal tests. 3rd Edition. London: Sage publications; 2006. p. 220.
159.
Tomczak M, Tomczak E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in sport sciences. 2014;1(21):19–25.
160.
Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6(3):241–52.
161.
Straus SE, Glasziou P, et al. Diagnosis and screening. In: Evidence-based medicine: How to practice and teach EBM. Fifth Edition. Edinburgh: Elsevier; 2019. p. 185–218.
162.
Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ: British Medical Journal. 1994;308(6943):1552.
163.
Peixoto R de O, Nunes TA, Gomes CA. Indices diagnósticos da ultrassonografia abdominal na apendicite aguda: Influência do genero e constituição física, tempo evolutivo da doença e experiencia do radiologista. Revista do Colégio Brasileiro de Cirurgiões. 2011;38:105–11.
164.
Altman DG, Bland JM. Diagnostic tests 2: Predictive values. Bmj. 1994;309(6947):102.
165.
Pereira Lima A, Vieira FJ, Oliveira GP de M, et al. Perfil clinico-epidemiologico da apendicite aguda: Analise retrospectiva de 638 casos. Revista do Colegio Brasileiro de Cirurgiões. 2016;43:248–53.
166.
Halkin A, Reichman J, Schwaber M, Paltiel O, Brezis M. Likelihood ratios: Getting diagnostic testing into perspective. QJM: monthly journal of the Association of Physicians. 1998;91(4):247–58.
167.
Deeks JJ, Altman DG. Diagnostic tests 4: Likelihood ratios. Bmj. 2004;329(7458):168–9.
168.
Guyatt G, Rennie D, et al. Diagnostic tests. In: User’s guides to medical literature: A manual for evidence-based clinical practice. 3rd Edition. New York: JAMA; 2015. p. 607–31.
169.
Oliveira Filho PF de. Testes diagnósticos. In: Epidemiologia e bioestatística: Fundamentos para a leitura crítica. Segunda Edição. Rio de Janeiro: Editora Rubio; 2022. p. 89–105.
170.
Caraguel CG, Vanderstichel R. The two-step fagan’s nomogram: Ad hoc interpretation of a diagnostic test result without calculation. BMJ Evidence-Based Medicine. 2013;18(4):125–8.
171.
Fagan T. Nomogram for bayes’s theorem. New England Journal of Medicine. 1975;293:257.
172.
Altman DG, Bland JM. Diagnostic tests 3: Receiver operating characteristic plots. BMJ: British Medical Journal. 1994;309(6948):188.
173.
Robin X, Turck N, Hainard A, et al. pROC: An open-source package for r and s+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):1–8.
174.
Borges LSR. Diagnostic accuracy measures in cardiovascular research. Int J Cardiovasc Sci. 2016;29(3):218–22.
175.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics. 1988;44:837–45.
176.
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.
177.
Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement. 1960;20(1):37–46.
178.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;159–74.
179.
Zeileis A, Meyer D, Hornik K. Residual-based shadings for visualizing (conditional) independence. Journal of Computational and Graphical Statistics. 2007;16(3):507–25.
180.
Szklo M, Nieto FJ. Measuring disease occurrence. In: Epidemiology: Beyond the basics. Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p. 80–1.
181.
Mark, Sergeant E, et al. epiR: Tools for the analysis of epidemiological data [Internet]. 2022. Available from: https://CRAN.R-project.org/package=epiR
182.
Feychting M, Osterlund B, Ahlbom A. Reduced cancer incidence among the blind. Epidemiology. 1998;9(5):490–4.
183.
Gross M. Oswego county revisited. Public health reports. 1976;91(2):168.
184.
Aragon TJ. Epitools: Epidemiology tools [Internet]. 2020. Available from: https://CRAN.R-project.org/package=epitools
185.
Szklo M, Nieto FJ. Measuring associations between exposures and outcomes. In: Epidemiology: Beyond the basics. Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p. 88–94.
186.
Davies HTO, Crombie IK, Tavakoli M. When can odds ratios mislead? BMJ. 1998;316(7136):989–91.
187.
Hopkins WG. A scale of magnitudes for effect statistics [Internet]. A New View of Statistics. Sportscience; 2016. Available from: http://www.sportsci.org/resource/stats/index.html
188.
Szklo M, Nieto FJ. Measuring associations between exposures and outcomes. In: Epidemiology: Beyond the basics. Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p. 84–102.
189.
Madi JM, Souza R da S de, Araujo BF de, Oliveira Filho PF, et al. Prevalence of toxoplasmosis, HIV, syphilis and rubella in a population of puerperal women using whatman 903 filter paper. The Brazilian Journal of Infectious Diseases. 2010;14(1):24–9.
190.
Szklo M, Nieto FJ. Measuring associations between exposures and outcomes. In: Epidemiology: Beyond the basics. Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p. 97–8.
191.
Physicians’ Health Study Research Group* SC of the. Final report on the aspirin component of the ongoing physicians’ health study. New England Journal of Medicine. 1989;321(3):129–35.
192.
Kohl M. Package “MKmisc” [Internet]. 2019. Available from: https://github.com/stamats/MKmisc
193.
Bender R. Calculating confidence intervals for the number needed to treat. Controlled clinical trials. 2001;22(2):102–10.
194.
Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part i: Basic concepts and first analyses. British Journal of Cancer. 2003;89(2):232–8.
195.
Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 1958;53(282):457–81.
196.
Peat J, Barton B. Survival analyses. In: Medical statistics : A guide to SPSS, data analysis, and critical appraisal. New York, NY: John Wiley & Sons; 2014. p. 352–3.
197.
Qiu W, Chavarro J, Lazarus R, Rosner B, Ma J. powerSurvEpi: Power and sample size calculation for survival analysis of epidemiological studies. R package version 00. 2015;9.
198.
Therneau T et al. A package for survival analysis in r. R package version. 2015;2(7).
199.
Kassambara A, Kosinski M, Biecek P, Fabian S. Survminer: Drawing survival curves using ggplot2. URL https://CRAN R-project org/package= survminer R package version 04. 2021;9.
200.
Bland JM, Altman DG. The logrank test. BMJ. 2004;328(7447):1073.
201.
Cox DR. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B: Statistical Methodology. 1958;20(2):215–32.
202.
Peat J, Barton B. Adjusted odds ratios. In: Medical statistics : A guide to SPSS, data analysis, and critical appraisal. New York, NY: John Wiley & Sons; 2014. p. 298–308.
203.
Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL. Regressão logística: Regressão com uma variável dependente binária. In: Análise multivariada de dados. 6a Edição. bookman; 2009. p. 283–302.
204.
Verzani J. Extensions to linear model. In: Using r for introductory statistics. Second Edition. Chapman & Hall/CRC; 2014. p. 440–8.
205.
Stoltzfus JC. Logistic regression: A brief primer. Academic emergency medicine. 2011;18(10):1099–104.
206.
Wikipédia. RMS titanic — wikipédia, a enciclopédia livre [Internet]. 2025. Available from: https://pt.wikipedia.org/w/index.php?title=RMS_Titanic&oldid=69869298
207.
Prabhakaran S. Missing value treatment [Internet]. datascienceplus. 2016. Available from: https://datascienceplus.com/missing-value-treatment/
208.
Van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate imputation by chained equations in r. Journal of statistical software. 2011;45:1–67.
209.
Subramanian J, Simon R. Overfitting in prediction models–is it a problem only in high dimensions? Contemporary clinical trials. 2013;36(2):636–41.
210.
Field A, Miles J, Field Z. Logistic regression. In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 320.
211.
Lüdecke D. sjPlot: Data visualization for statistics in social science [Internet]. 2024. Available from: https://CRAN.R-project.org/package=sjPlot
212.
Lüdecke D. Ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software. 2018;3(26):772.
213.
Hosmer Jr DW, Lemeshow S, Sturdivant RX. Interpretation of fitted logistic regression model. In: Applied logistic regression. Third Edition. John Wiley & Sons; 2013. p. 49–64.
214.
McFadden D. Conditional logit analysis of qualitative choice behavior. In: Zarembka P, editor. Frontiers in econometrics. Academic Press; 1974. p. 105-142-142.
215.
Cox DR, Snell EJ. Analysis of binary data. Second Edition. Chapman; Hall/CRC; 1989.
216.
Nagelkerke NJ et al. A note on a general definition of the coefficient of determination. Biometrika. 1991;78(3):691–2.
217.
McFadden D. Quantitative methods for analysing travel behaviour of individuals: Some recent developments. In: Behavioural travel modelling. Routledge; 2021. p. 279–318.
218.
Bobbitt Z. How to calculate standardized residuals in r [Internet]. Statology. 2020. Available from: https://www.statology.org/standardized-residuals-in-r/
219.
Field A, Miles J, Field Z. Outliers and influential cases. In: Discovering statistics using r. Sage Publications, Ltd; 2012. p. 288–92.
220.
Hoaglin DC, Welsch RE. The hat matrix in regression and ANOVA. The American Statistician. 1978;32(1):17–22.
221.
Stevens JP. Outliers and influential data points in regression analysis. Psychological bulletin. 1984;95(2):334.
222.
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C-C, et al. Package “e1071.” The R Journal. 2019;1–67.