References
1.
Armitage P, Berry G, Matthews JNS. Statistical
methods in medical research. John Wiley & Sons; 2008.
2.
Massad E, Silveira PSP, Menezes RX de, Ortega
NRS. Métodos quantitativos em medicina. Editora Manole Ltda; 2004.
3.
Kendall MG. Studies in the history of
probability and statistics. Where shall the history of statistics begin?
Biometrika. 1960;47(3/4):447–9.
4.
Breve história dos censos [Internet]. Instituto
Nacional de Estatistica. Statistics Portugal; 2014. Available from: https://censos.ine.pt/xportal/xmain?xpid=CENSOS&xpgid=censos_bhistoria
5.
Salgado-Neto G, Salgado A. Sir francis galton e
os extremos superiores da curva normal. Revista de Ciências Humanas.
2011;45(1):223–39.
6.
Stolley PD, Lasky T. The beginnings of
epidemiology. In: Investigating disease patterns. Scientific American
Library; 2000. p. 23–49.
7.
Stolley PD, Lasky T. Lung cancer: New methods
of studying disease. In: Investigating disease patterns. Scientific
American Library; 2000. p. 51–79.
8.
Editors History com. Florence
Nightingale.
https://www.history.com/topics/womens-history/florence-nightingale-1;
9.
Moore DS. Topics in inferency. In: The basic
practice of statistics. W.H. Freeman; 2000. p. 417.
10.
Hald A. Biography of fisher. In: A history of
parametric statistics inference from bernoulli to fisher,1713-1935. John
Wiley & Sons; 2007. p. 159–63.
11.
Salsburg D. Uma senhora toma chá... In: Uma
senhora toma chá. Zahar; 2009. p. 17–23.
12.
Kruskal W. The significance of fisher: A review
of r.a. Fisher: The life of a scientist. Journal of the American
Statistical Association [Internet]. 1980;75(372):1019–30. Available
from: https://doi.org/10.1080/01621459.1980.10477590
13.
Matthews R, Chalmers I, Rothwell P. Douglas g
altman: Statistician, researcher, and driving force behind global
initiatives to improve the reliability of health research. British
Medical Journal Publishing Group; 2018.
14.
Altman DG. The scandal of poor medical
research. Vol. 308, Bmj. British Medical Journal Publishing Group; 1994.
p. 283–4.
15.
R
Core Team. The r project for statistical computing | what is r?
Disponível em: https://www.r-project.org/about.html; 2022.
16.
R
Core Team. The r project for statistical computing | CRAN mirrors.
Disponível em: https://cran.r-project.org/mirrors.html; 2022.
17.
Whitney L et al. R programming language
continues to grow in popularity [Internet]. TechRepublic. 2020.
Available from: https://www.techrepublic.com/article/r-programming-language-continues-to-grow-in-popularity
18.
Oliveira Filho PF de. Natureza dos dados. In:
Epidemiologia e bioestatística–fundamentos para a leitura crítica. 2ª
edição. Editora Rubio; 2022. p. 3–6.
19.
Kirkwood BR, Sterne JA. Defining the data. In:
Essential medical statistics. Second Edition. Blackwell Science Company;
2003. p. 9–14.
20.
Sternbach GL. The glasgow coma scale. The
Journal of emergency medicine. 2000;19(1):67–71.
21.
Pediatrics AA of, Obstetricians AC of. The
apgar score. Pediatrics. 2006;117(4):1444–7.
22.
Bowers D. First things first-the nature of
data. In: Medical statistics from scratch. Second Edition. John Wiley;
Sons; 2008. p. 3–13.
23.
Ribeiro Mendes F. O que é um trabalho
científico. In: Iniciacão cientifica. Autonomia Editora; 2012. p. 17–26.
24.
Hulley SB, Cummings SR, Browner WS, Grady DG,
Newman TB. Elaborando a questão de pesquisa e desenvolvendo o plano de
estudo. In: Delineando a pesquisa clinica. Quarta Edição. Artmed
Editora; 2015. p. 15–24.
25.
McCombes S. Sampling methods [Internet].
https://www.scribbr.com/methodology/sampling-methods/. scribbr.com Team;
2019. Available from: https://www.scribbr.com/
26.
Callegari-Jacques SM. Amostras. In:
Bioestatistica: Principios e aplicações. Artmed Editora; 2003. p. 146–7.
27.
Faul F, Erdfelder E, Lang A-G, Buchner A. G*
power 3: A flexible statistical power analysis program for the social,
behavioral, and biomedical sciences. Behavior research methods.
2007;39(2):175–91.
28.
Cohen J. Statistical power analysis for the
behavioral sciences. Lawrence Erlbaum Associates; 1988.
29.
Grimes DA, Schulz KF. An overview of clinical
research: The lay of the land. The lancet. 2002;359(9300):57–61.
30.
Fletcher RH, Fletcher SW, Fletcher GS.
Prognóstico. In: Epidemiologia clínica: Elementos essenciais. Artmed
Editora; 2014. p. 108–9.
31.
Grimes DA, Schulz KF. Descriptive studies: What
they can and cannot do. The Lancet. 2002;359(9301):145–9.
32.
Fletcher RH, Fletcher SW, Fletcher GS. Risco:
Da doença à exposição. In: Epidemiologia clínica: Elementos essenciais.
Artmed Editora; 2014. p. 88.
33.
Grimes DA, Schulz KF. Compared to what? Finding
controls for case-control studies. The Lancet. 2005;365(9468):1429–33.
34.
Ernster VL. Nested case-control studies.
Preventive Medicine. 1994;23(5):587–90.
35.
Newman TB, Browner WS, Cummings SR, Hulley SB.
Delineando estudos de caso-controle. In: Delineando a pesquisa clinica.
Quarta Edição. Artmed Editora; 2015. p. 111.
36.
Grimes DA, Schulz KF. Cohort studies: Marching
towards outcomes. The Lancet. 2002;359(9303):341–5.
37.
Fletcher RH, Fletcher SW, Fletcher GS. Risco:
Da doença à exposição. In: Epidemiologia clínica: Elementos essenciais.
Artmed Editora; 2014. p. 68.
38.
Celentano DD, Szklo M. Cohort studies. In:
Gordis epidemiology. 6th Edition. Elsevier; 2019. p. 179.
39.
Kannel WB, McGee DL. Diabetes and
cardiovascular risk factors: The framingham study. Circulation.
1979;59(1):8–13.
40.
Coutinho M. Principios de epidemiologia clínica
aplicada a cardiologia. Arquivos Brasileiros de Cardiologia.
1998;71:109–16.
41.
McCambridge J, Witton J, Elbourne DR.
Systematic review of the hawthorne effect: New concepts are needed to
study research participation effects. Journal of Clinical Epidemiology.
2014;67(3):267–77.
42.
Bland JM, Altman DG. Statistic notes:
Regression towards the mean. BMJ. 1994;308(6942):1499.
43.
Kabisch M, Ruckes C, Seibert-Grafe M, Blettner
M. Randomized controlled trials: Part 17 of a series on evaluation of
scientific publications. Deutsches Ärzteblatt
International. 2011;108(39):663.
44.
Fletcher RH, Fletcher SW, Fletcher GS.
Tratamento. In: Epidemiologia clínica: Elementos essenciais. Artmed
Editora; 2014. p. 143.
45.
Elander G, Hermerén G. Placebo effect and
randomized clinical trials. Theoretical Medicine. 1995;16(2):171–82.
46.
Schulz KF, Grimes DA. Blinding in randomised
trials: Hiding who got what. The Lancet. 2002;359(9307):696–700.
47.
Montori VM, Guyatt GH. Intention-to-treat
principle. CMAJ. 2001;165(10):1339–41.
48.
Christensen E. Methodology of superiority vs.
Equivalence trials and non-inferiority trials. Journal of hepatology.
2007;46(5):947–54.
49.
Health Improvement O for, Disparities.
Crossover randomised controlled trial: Comparative studies [Internet].
Office for Health Improvement and Disparities. UK Health improvement;
2020. Available from: https://www.gov.uk/guidance/crossover-randomised-controlled-trial-comparative-studies
50.
Hennekens CH, Buring JE, et al. Lack of effect
of long-term supplementation with beta carotene on the incidence of
malignant neoplasms and cardiovascular disease. New England Journal of
Medicine. 1996;334(18):1145–9.
51.
Stanley K. Design of randomized controlled
trials. Circulation. 2007;115(9):1164–9.
52.
Chang W. Cookbook for r. Cookbook for R.
http://www.cookbook-r.com; 2021.
53.
Verzani J. Using r for introductory statistics.
Chapman; Hall/CRC; 2004.
54.
Damiani A, Milz B, Lente C, al et. Ciência de
dados em r [Internet]. R6 Consultoria; 2015. Available from: https://livro.curso-r.com/index.html
55.
Zuur AF, Ieno EN, Meesters EH. Getting data
into r. In: A beginner’s guide to r. Springer; 2009. p. 29–56.
56.
Wickham H, François R, Henry L, Müller K, et
al. Dplyr: A grammar of data manipulation. R package version 04.
2015;3:156.
57.
Wickham H, Grolemund G. 15 factors|r for data
science [Internet]. Welcome | R for Data Science. O’Reilly; 2017.
Available from: https://r4ds.had.co.nz/factors.html
58.
Ooms J. Writexl: Export data frames to excel
’xlsx’ format [Internet]. 2022. Available from: https://CRAN.R-project.org/package=writexl
59.
Team RC. Write.table: Data output/CSV files
[Internet]. DataCamp; 2022. Available from: https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/write.table
60.
Wickham H, Averick M, Bryan J, Chang W, et al.
Welcome to the tidyverse. Journal of Open Source Software.
2019;4(43):1686.
61.
Wickham H. Tidy data. Journal of Statistical
Software. 2014;59(10):11–23.
62.
Wickham H, Girlich M. Tidyr: Tidy messy data
[Internet]. 2022. Available from: https://CRAN.R-project.org/package=tidyr
63.
Fisher RA. The use of multiple measurements in
taxonomic problems. Annals of eugenics. 1936;7(2):179–88.
64.
Grolemund G, Wickham H. Dates and times made
easy with lubridate. Journal of Statistical Software [Internet].
2011;40(3):1–25. Available from: https://www.jstatsoft.org/v40/i03/
65.
Field A, Miles J, Field Z. Everithing you ever
wanted to know about statistics (well, sort of). In: Discovering
statistics using r. Sage Publications, Ltd; 2012. p. 38.
66.
Oliveira Filho PF de. Tabelas. In:
Epidemiologia e bioestatística-fundamentos para a leitura crítica. 2ª
edição. Editora Rubio; 2022. p. 9–12.
67.
Arango HG. Organização dos dados em tabelas.
In: Bioestatística: Teórica e computacional. 3ª edição. Guanabara
Koogan; 2009. p. 32–57.
68.
Gohel D, Skintzos P. Flextable: Functions for
tabular reporting [Internet]. 2024. Available from: https://CRAN.R-project.org/package=flextable
69.
Arango HG. Números de classes e intervalo de
classes. In: Bioestatística teórica e computacional. Terceira edição.
Guanabara Koogan, RJ; 2009. p. 35–40.
70.
Rasmussen KM, Yaktine AL, et al. Weight gain
during pregnancy: Reexamining the guidelines. 2009;
71.
Field A, Miles J, Field Z. Exploring data with
graphs. In: Discovering statistics using r. Sage Publications, Ltd;
2012. p. 117.
72.
Wickham H. Getting started with ggplot2. In:
ggplot2. Second edition. Springer; 2016. p. 11–31.
73.
Tufte ER. Aesthetics and technique in data
graphical design. In: The visual display of quantitative information.
Second edition. Graphics Press; 2001. p. 178.
74.
Lemon J, Bolker B, Oom S, et al. Package
“plotrix.” Vienna: R Development Core Team. 2015;
75.
Kabacoff RI. Basic graphs. In: R in action:
Data analysis and graphics with r. Manning Publications Co.; 2011. p.
120–4.
76.
Harrell FE, Dupont C. Hmisc: Harrell
miscellaneous [Internet]. R package version. 2022. Available from: https://cran.r-project.org/web/packages/Hmisc/index.html
77.
Wickham H. A layered grammar of graphics.
Journal of Computational and Graphical Statistics. 2010;19(1):3–28.
78.
Wickham H. ggplot2: Elegant graphics for data
analysis [Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org
79.
Rinker TW, Kurkiewicz D. Pacman: Package
management for r [Internet]. Buffalo, New York; 2018. Available from: http://github.com/trinker/pacman
80.
Debnath L, Basu K. A short history of
probability theory and its applications. International Journal of
Mathematical Education in Science and Technology. 2015;46(1):13–39.
81.
Menezes RX de. Introdução à probabilidade. In:
Massad E, Menezes RX de, Silveira PSP, Ortega NRS, editors. Métodos
quantitativos em medicina. Barueri, São Paulo: Editora Manole Ltda.;
2004. p. 151–87.
82.
Pagano M, Kimberly G. Theoretical probability
distributions. In: Principles of biostatistics. Second Edition. CRC
Press; 2000. p. 162.
83.
Gonzalez JCS. Normal distribution in r
[Internet]. R CODER. 2021. Available from: https://r-coder.com/
84.
Robertson E, O’Connor J. Jacob (jacques)
bernoulli [Internet]. Maths History. School of Mathematics; Statistics,
University of St Andrews; 2022. Available from: https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
85.
Fisher LD, Van Belle G. Poisson random
variables. In: Biostatistics: A methodology for the health sciences. New
York, NY: John Wiley & Sons; 1993. p. 211–8.
86.
Peat J, Barton B. Descriptive statistics. In:
Medical statistics : A guide to SPSS, data analysis, and critical
appraisal. New York, NY: John Wiley & Sons; 2014. p. 24–51.
87.
Joanes D, Gill C. Comparing measures of sample
skewness and kurtosis. Journal of the Royal Statistical Society.
1998;47(1):183–9.
88.
George D, Mallery P. Descriptive statistics.
In: IBM SPSS statistics 26 step by step: A simple guide and reference.
New York, NY: Taylor & Francis Group; 2020. p. 114–20.
89.
Pagano M, Gavreau K. The central limit theorem.
In: Principles of biostatistics. Second Edition. Pacific Grove, CA:
Duxbury; 2000. p. 197–8.
90.
Motulsky H. The theory of confidence intervals.
In: Intuitive biostatistics: A nonmathematical guide to statistical
thinking. Second Edition. New York, NY: Oxford University Press; 2010.
p. 96–102.
91.
Signorell A et al. DescTools: Tools for
descriptive statistics [Internet]. 2022. Available from: https://cran.r-project.org/package=DescTools
92.
Kelen GD, Brown CB, Ashton J. Statistical
reasoning in clinical trials: Hypothesis testing. Am J Emerg Med.
1988;1(1):52–61.
93.
Menezes RX de, Burattini MN. Testes de hipótese
e intervalos de confiança. In: Massad E, Menezes RX de, Silveira PSP,
Ortega NRS, editors. Métodos quantitativos em medicina. Barueri, São
Paulo: Editora Manole Ltda.; 2004. p. 225–41.
94.
Guyatt G, Jaeschke R, Heddle N, et al. Basic
statistics for clinicians: 1. Hypothesis testing. CMAJ: Canadian Medical
Association Journal. 1995;152(1):27.
95.
Fletcher RH, Fletcher SW, Fletcher GS. Acaso.
In: Epidemiologia clínica: Elementos essenciais. Quinta Edição. Artmed
Editora; 2014. p. 108–9.
96.
Menezes RX de, Burattini MN. Testes de hipótese
e intervalos de confiança. In: Massad E, Menezes RX de, Silveira PSP,
Ortega NRS, editors. Métodos quantitativos em medicina. Barueri, São
Paulo: Editora Manole Ltda.; 2004. p. 225–41.
97.
Pagano M, Kimberly G. Comparison of two means.
In: Principles of biostatistics. Second Edition. CRC Press; 2000. p.
262–72.
98.
Zimmerman DW. A note on preliminary tests of
equality of variances. Br J Math Stat Psychol. 2004;57(1):173–81.
99.
Razali NM, Wah YB, et al. Power comparisons of
shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests.
Journal of statistical modeling and analytics. 2011;2(1):21–33.
100.
Ghasemi A, Zahediasl S. Normality tests for
statistical analysis: A guide for non-statisticians. International
journal of endocrinology and metabolism. 2012;10(2):486.
101.
Yap BW, Sim CH. Comparisons of various types of
normality tests. Journal of Statistical Computation and Simulation.
2011;81(12):2141–55.
102.
Fox J, Weisberg S. An r companion to applied
regression [Internet]. Third. Thousand Oaks CA: Sage; 2019.
Available from: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
103.
Kassambara A. Rstatix: Pipe-friendly framework
for basic statistical tests [Internet]. 2022. Available from: https://CRAN.R-project.org/package=rstatix
104.
Cohen J. Statistical power analysis for the
behavioral sciences. 2nd Edition. Routledge; 1988.
105.
Lindenau JD, Guimaraes LSP. Calculating the
effect size in SPSS. Revista HCPA [Internet]. 2012;32(3):363–81.
Available from: https://seer.ufrgs.br/hcpa
106.
Field A, Miles J, Field Z. Comparing several
means: ANOVA (GML 1). In: Discovering statistics using r. Sage
Publications, Ltd; 2012. p. 399–400.
107.
Menezes RX de. Análise de variância. In: Massad
E, Menezes RX de, Silveira PSP, Ortega NRS, editors. Métodos
quantitativos em medicina. Barueri, São Paulo: Editora Manole Ltda.;
2004. p. 297–300.
108.
Garren ST. Package fastgraph [Internet]. CRAN.
Comprehensive R Archive Network (CRAN); 1919. Available from: https://CRAN.R-project.org/package=fastGraph
109.
Peat J, Barton B. Continuous variables:
Analysis of variance. In: Medical statistics : A guide to SPSS, data
analysis, and critical appraisal. New York, NY: John Wiley & Sons;
2014. p. 114.
110.
Dag O, Dolgun A, Konar NM. Onewaytests: An r
package for one-way tests in independent groups designs. R Journal.
2018;10(1):175–99.
111.
Ben-Shachar MS, Lüdecke D, Makowski D.
Effectsize: Estimation of effect size indices and standardized
parameters. Journal of Open Source Software. 2020;5(56):2815.
112.
Watson P. Rules of thumb on magnitudes of
effect sizes [Internet]. MRC Cognition and Brain Sciences Unit.
Cambridge University; 2021. Available from: https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize
113.
Field A, Miles J, Field Z. Factorial ANOVA
(GLM3). In: Discovering statistics using r. Sage Publications, Ltd;
2012. p. 513–4.
114.
Kassambara A. Ggpubr:’ggplot2’ based
publication ready plots [r package ggpubr version 0.5.0] [Internet]. The
Comprehensive R Archive Network. Comprehensive R Archive Network (CRAN);
2022. Available from: https://cloud.r-project.org/web/packages/ggpubr/index.html
115.
Patterson R, Coffman J, Goldstein-Greenwood J,
Others. Understanding diagnostic plots for linear regression analysis
[Internet]. Research Data Services + Sciences. University of Virginia
Library; 2015. Available from: https://data.library.virginia.edu/diagnostic-plots/
116.
Wickens TD, Keppel G. Two-way factorial
experiments. In: Design and analysis: A researcher’s handbook. Pearson
Prentice-Hall; 2004. p. 193–286.
117.
Maxwell SE, Delaney HD, Kelley K. Two-way
between-subject factorial designs. In: Designing experiments and
analyzing data: A model comparison perspective. Third Edition.
Routledge; 2017. p. 312–82.
118.
Lenth R, Singmann H, Love J, Buerkner P, Herve
M. Emmeans: Estimated marginal means, aka least-squares means. R package
version. 2018;1(1):3.
119.
Rosenberg M. Society and the adolescent
self-image. Princeton university press; 2015.
120.
Dini G, Quaresma M, Ferreira L, et al.
Adaptação cultural e validação da versão brasileira da escala de
autoestima de rosenberg. Revista Brasileira de Cirurgia Plástica.
2001;19(1):41–52.
121.
Huynh H, Feldt LS. Estimation of the box
correction for degrees of freedom from sample data in randomized block
and split-plot designs. Journal of Educational Statistics.
1976;1(1):69–82.
122.
Girden ER. Two-factor studies with repeated
measures on both factors. In: ANOVA: Repeated measures. Sage; 1992. p.
31–40. (QASS series; vol. 84).
123.
Muller KE, Barton CN. Approximate power for
repeated-measures ANOVA lacking sphericity. Journal of the American
Statistical Association. 1989;84(406):549–55.
124.
Greene Jr JW, Touchstone JC. Urinary estriol as
an index of placental function. A study of 279 cases. Obstetrical &
Gynecological Survey. 1963;18(3):356–9.
125.
Kassambara A. Correlation test between two
variables in r [Internet]. STHDA - Statistical tools for high-throughput
data analysis. 2021. Available from: http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-r
126.
Schober P, Boer C, Schwarte LA. Correlation
coefficients: Appropriate use and interpretation. Anesthesia &
Analgesia. 2018;126(5):1763–8.
127.
De
Winter JC, Gosling SD, Potter J. Comparing the pearson and spearman
correlation coefficients across distributions and sample sizes: A
tutorial using simulations and empirical data. Psychological methods.
2016;21(3):273.
128.
Sedgwick P. Correlation versus linear
regression. BMJ. 2013;346.
129.
Kim H-Y. Statistical notes for clinical
researchers: Simple linear regression 3–residual analysis. Restorative
dentistry & endodontics. 2019;44(1).
130.
Field A, Miles J, Field Z. Regression. In:
Discovering statistics using r. Sage Publications, Ltd; 2012. p. 266–76.
131.
Peat J, Barton B. Correlation and regression.
In: Medical statistics : A guide to SPSS, data analysis, and critical
appraisal. New York, NY: John Wiley & Sons; 2014. p. 209.
132.
Altman DG, Gardner MJ. Statistics in medicine:
Calculating confidence intervals for regression and correlation. British
Medical Journal (Clinical research ed). 1988;296(6631):1238.
133.
Altman DG. Comparing groups: Categorical data.
In: Practical statistics for medical research. London: Chapman &
Hall/CRC; 1991. p. 244–7.
134.
Myszkowski N. Nhstplot package [Internet].
RDocumentation. 2020. Available from: https://rdocumentation.org/packages/nhstplot/versions/1.1.0
135.
Warnes GR, Bolker B, et al. Gmodels: Various r
programming tools for model fitting [Internet]. CRAN R Project. 2022.
Available from: https://rdrr.io/cran/gmodels/
136.
Comtois D. Summarytools: Tools to quickly and
neatly summarize data [Internet]. CRAN R Project. 2022. Available
from:
https://github.com/dcomtois/summarytools
137.
Daniel WW, Cross CL. The chi-square
distribution and analysis of frequencies. In: Practical statistics for
medical research. Hoboken, NJ: John Wiley & Sons, Inc; 2013. p.
604–19.
138.
Eliasziw M, Donner A. Application of the
McNemar test to non-independent matched pair data. Statistics in
medicine. 1991;10(12):1981–91.
139.
Rosner B. Hypothesis testing: Categorical data.
In: Fundamentals of biostatistics. Seventh Edition. Boston: Cengage;
2011. p. 377.
140.
Altman DG. Comparing groups: Continuos data.
In: Practical statistics for medical research. London: Chapman &
Hall/CRC; 1991. p. 194–7.
141.
Hothorn T, Hornik K, Van De Wiel MA, Zeileis A.
A lego system for conditional inference. The American Statistician.
2006;60(3):257–63.
142.
Zar JH. Paired-sample hypotheses. In:
Biostatistical analysis. Edinburgh: Pearson; 2014. p. 189–98.
143.
Karadimitriou SM, Marshall E. Kruskal-wallis in
r [Internet]. Statistics Support for Students. Loughborough; Coventry
Universities; 2020. Available from: https://www.statstutor.ac.uk/
144.
Zar JH. Nonparametric analysis of variance. In:
Biostatistical analysis. Edinburgh: Pearson; 2014. p. 226–30.
145.
Kanji GK. The kruskal–wallis test. In: 100
statiscal tests. 3rd Edition. London: Sage publications; 2006. p. 220.
146.
Tomczak M, Tomczak E. The need to report effect
size estimates revisited. An overview of some recommended measures of
effect size. Trends in sport sciences. 2014;1(21):19–25.
147.
Dunn OJ. Multiple comparisons using rank sums.
Technometrics. 1964;6(3):241–52.
148.
Straus SE, Glasziou P, et al. Diagnosis and
screening. In: Evidence-based medicine: How to practice and teach EBM.
Fifth Edition. Edinburgh: Elsevier; 2019. p. 185–218.
149.
Altman DG, Bland JM. Diagnostic tests. 1:
Sensitivity and specificity. BMJ: British Medical Journal.
1994;308(6943):1552.
150.
Peixoto R de O, Nunes TA, Gomes CA. Indices
diagnósticos da ultrassonografia abdominal na apendicite aguda:
Influência do genero e constituição física, tempo evolutivo da doença e
experiencia do radiologista. Revista do Colégio Brasileiro de
Cirurgiões. 2011;38:105–11.
151.
Altman DG, Bland JM. Diagnostic tests 2:
Predictive values. Bmj. 1994;309(6947):102.
152.
Pereira Lima A, Vieira FJ, Oliveira GP de M, et
al. Perfil clinico-epidemiologico da apendicite aguda: Analise
retrospectiva de 638 casos. Revista do Colegio Brasileiro de Cirurgiões.
2016;43:248–53.
153.
Halkin A, Reichman J, Schwaber M, Paltiel O,
Brezis M. Likelihood ratios: Getting diagnostic testing into
perspective. QJM: monthly journal of the Association of Physicians.
1998;91(4):247–58.
154.
Deeks JJ, Altman DG. Diagnostic tests 4:
Likelihood ratios. Bmj. 2004;329(7458):168–9.
155.
Guyatt G, Rennie D, et al. Diagnostic tests.
In: User’s guides to medical literature: A manual for evidence-based
clinical practice. 3rd Edition. New York: JAMA; 2015. p. 607–31.
156.
Oliveira Filho PF de. Testes diagnósticos. In:
Epidemiologia e bioestatística: Fundamentos para a leitura crítica.
Segunda Edição. Rio de Janeiro: Editora Rubio; 2022. p. 89–105.
157.
Caraguel CG, Vanderstichel R. The two-step
fagan’s nomogram: Ad hoc interpretation of a diagnostic test result
without calculation. BMJ Evidence-Based Medicine. 2013;18(4):125–8.
158.
Fagan T. Nomogram for bayes’s theorem. New
England Journal of Medicine. 1975;293:257.
159.
Altman DG, Bland JM. Diagnostic tests 3:
Receiver operating characteristic plots. BMJ: British Medical Journal.
1994;309(6948):188.
160.
Robin X, Turck N, Hainard A, et al. pROC: An
open-source package for r and s+ to analyze and compare ROC curves. BMC
Bioinformatics. 2011;12(1):1–8.
161.
Borges LSR. Diagnostic accuracy measures in
cardiovascular research. Int J Cardiovasc Sci. 2016;29(3):218–22.
162.
DeLong ER, DeLong DM, Clarke-Pearson DL.
Comparing the areas under two or more correlated receiver operating
characteristic curves: A nonparametric approach. Biometrics.
1988;44:837–45.
163.
Youden WJ. Index for rating diagnostic tests.
Cancer. 1950;3(1):32–5.
164.
Cohen J. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement. 1960;20(1):37–46.
165.
Landis JR, Koch GG. The measurement of observer
agreement for categorical data. Biometrics. 1977;159–74.
166.
Zeileis A, Meyer D, Hornik K. Residual-based
shadings for visualizing (conditional) independence. Journal of
Computational and Graphical Statistics. 2007;16(3):507–25.
167.
Szklo M, Nieto FJ. Measuring disease
occurrence. In: Epidemiology: Beyond the basics. Fourth Edition.
Burlington, MA: Jones & Bartlett Learning; 2019. p. 80–1.
168.
Mark, Sergeant E, et al. epiR: Tools for the
analysis of epidemiological data [Internet]. 2022. Available from: https://CRAN.R-project.org/package=epiR
169.
Feychting M, Osterlund B, Ahlbom A. Reduced
cancer incidence among the blind. Epidemiology. 1998;9(5):490–4.
170.
Gross M. Oswego county revisited. Public health
reports. 1976;91(2):168.
171.
Aragon TJ. Epitools: Epidemiology tools
[Internet]. 2020. Available from: https://CRAN.R-project.org/package=epitools
172.
Szklo M, Nieto FJ. Measuring associations
between exposures and outcomes. In: Epidemiology: Beyond the basics.
Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p.
88–94.
173.
Davies HTO, Crombie IK, Tavakoli M. When can
odds ratios mislead? BMJ. 1998;316(7136):989–91.
174.
Hopkins WG. A scale of magnitudes for effect
statistics [Internet]. A New View of Statistics. Sportscience; 2016.
Available from: http://www.sportsci.org/resource/stats/index.html
175.
Szklo M, Nieto FJ. Measuring associations
between exposures and outcomes. In: Epidemiology: Beyond the basics.
Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p.
84–102.
176.
Madi JM, Souza R da S de, Araujo BF de,
Oliveira Filho PF, et al. Prevalence of toxoplasmosis, HIV, syphilis and
rubella in a population of puerperal women using whatman
903 filter paper. The Brazilian Journal of Infectious
Diseases. 2010;14(1):24–9.
177.
Szklo M, Nieto FJ. Measuring associations
between exposures and outcomes. In: Epidemiology: Beyond the basics.
Fourth Edition. Burlington, MA: Jones & Bartlett Learning; 2019. p.
97–8.
178.
Physicians’ Health Study Research Group* SC of
the. Final report on the aspirin component of the ongoing physicians’
health study. New England Journal of Medicine. 1989;321(3):129–35.
179.
Kohl M. Package “MKmisc”
[Internet]. 2019. Available from: https://github.com/stamats/MKmisc
180.
Bender R. Calculating confidence intervals for
the number needed to treat. Controlled clinical trials.
2001;22(2):102–10.
181.
Clark TG, Bradburn MJ, Love SB, Altman DG.
Survival analysis part i: Basic concepts and first analyses. British
Journal of Cancer. 2003;89(2):232–8.
182.
Kaplan EL, Meier P. Nonparametric estimation
from incomplete observations. Journal of the American Statistical
Association. 1958;53(282):457–81.
183.
Peat J, Barton B. Survival analyses. In:
Medical statistics : A guide to SPSS, data analysis, and critical
appraisal. New York, NY: John Wiley & Sons; 2014. p. 352–3.
184.
Qiu W, Chavarro J, Lazarus R, Rosner B, Ma J.
powerSurvEpi: Power and sample size calculation for survival analysis of
epidemiological studies. R package version 00. 2015;9.
185.
Therneau T et al. A package for survival
analysis in r. R package version. 2015;2(7).
186.
Kassambara A, Kosinski M, Biecek P, Fabian S.
Survminer: Drawing survival curves using ggplot2. URL https://CRAN
R-project org/package= survminer R package version 04. 2021;9.
187.
Bland JM, Altman DG. The logrank test. BMJ.
2004;328(7447):1073.
188.
Cox DR. The regression analysis of binary
sequences. Journal of the Royal Statistical Society Series B:
Statistical Methodology. 1958;20(2):215–32.
189.
Peat J, Barton B. Adjusted odds ratios. In:
Medical statistics : A guide to SPSS, data analysis, and critical
appraisal. New York, NY: John Wiley & Sons; 2014. p. 298–308.
190.
Hair JF, Black WC, Babin BJ, Anderson RE,
Tatham RL. Regressão logística: Regressão com uma variável dependente
binária. In: Análise multivariada de dados. 6a Edição. bookman; 2009. p.
283–302.
191.
Verzani J. Extensions to linear model. In:
Using r for introductory statistics. Second Edition. Chapman &
Hall/CRC; 2014. p. 440–8.
192.
Stoltzfus JC. Logistic regression: A brief
primer. Academic emergency medicine. 2011;18(10):1099–104.
193.
Wikipédia. RMS titanic —
wikipédia, a enciclopédia livre [Internet]. 2025. Available
from: https://pt.wikipedia.org/w/index.php?title=RMS_Titanic&oldid=69869298
194.
Prabhakaran S. Missing value treatment
[Internet]. datascienceplus. 2016. Available from: https://datascienceplus.com/missing-value-treatment/
195.
Van Buuren S, Groothuis-Oudshoorn K. Mice:
Multivariate imputation by chained equations in r. Journal of
statistical software. 2011;45:1–67.
196.
Subramanian J, Simon R. Overfitting in
prediction models–is it a problem only in high dimensions? Contemporary
clinical trials. 2013;36(2):636–41.
197.
Field A, Miles J, Field Z. Logistic regression.
In: Discovering statistics using r. Sage Publications, Ltd; 2012. p.
320.
198.
Lüdecke D. sjPlot: Data visualization for
statistics in social science [Internet]. 2024. Available from: https://CRAN.R-project.org/package=sjPlot
199.
Lüdecke D. Ggeffects: Tidy data frames
of marginal effects from regression models. Journal of Open Source
Software. 2018;3(26):772.
200.
Hosmer Jr DW, Lemeshow S, Sturdivant RX.
Interpretation of fitted logistic regression model. In: Applied logistic
regression. Third Edition. John Wiley & Sons; 2013. p. 49–64.
201.
McFadden D. Conditional logit analysis of
qualitative choice behavior. In: Zarembka P, editor. Frontiers in
econometrics. Academic Press; 1974. p. 105-142-142.
202.
Cox DR, Snell EJ. Analysis of binary data.
Second Edition. Chapman; Hall/CRC; 1989.
203.
Nagelkerke NJ et al. A note on a general
definition of the coefficient of determination. Biometrika.
1991;78(3):691–2.
204.
McFadden D. Quantitative methods for analysing
travel behaviour of individuals: Some recent developments. In:
Behavioural travel modelling. Routledge; 2021. p. 279–318.
205.
Bobbitt Z. How to calculate standardized
residuals in r [Internet]. Statology. 2020. Available from: https://www.statology.org/standardized-residuals-in-r/
206.
Field A, Miles J, Field Z. Outliers and
influential cases. In: Discovering statistics using r. Sage
Publications, Ltd; 2012. p. 288–92.
207.
Hoaglin DC, Welsch RE. The hat matrix in
regression and ANOVA. The American Statistician. 1978;32(1):17–22.
208.
Stevens JP. Outliers and influential data
points in regression analysis. Psychological bulletin. 1984;95(2):334.
209.
Meyer D, Dimitriadou E, Hornik K, Weingessel A,
Leisch F, Chang C-C, et al. Package “e1071.” The R Journal.
2019;1–67.